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Abstract

Alzheimer’s disease is the leading cause of dementia among adults aged 65 or above. Alzheimer’s 

disease is characterized by a change point signaling a sudden and prolonged acceleration in 

cognitive decline. The timing of this change point is of clinical interest because it can be used 

to establish optimal treatment regimens and schedules. Here, we present a Bayesian hierarchical 

change point model with a parameter constraint to characterize the rate and timing of cognitive 

decline among Alzheimer’s disease patients. We allow each patient to have a unique random 

intercept, random slope before the change point, random change point time, and random slope 

after the change point. The difference in slope before and after a change point is constrained 

to be nonpositive, and its parameter space is partitioned into a null region (representing normal 

aging) and a rejection region (representing accelerated decline). Using the change point time, the 

estimated slope difference, and the threshold of the null region, we are able to (1) distinguish 

normal aging patients from those with accelerated cognitive decline, (2) characterize the rate and 

timing for patients experiencing cognitive decline, and (3) predict personalized risk of progression 

to dementia due to Alzheimer’s disease. We apply the approach to data from the Religious Orders 

Study, a national cohort study of aging Catholic nuns, priests, and lay brothers.
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1 Introduction

As adults age, they undergo subtle cognitive changes that may not initially manifest 

as clinical symptoms. These cognitive changes are often gradual, making them difficult 
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to distinguish at first from more debilitating cognitive decline. However, as individuals 

approach dementia, cognitive impairment becomes more obvious, and the decline in 

cognitive function begins to accelerate. Once dementia sets in, the cognitive decline pattern 

differs markedly from the pattern in normal aging adults.1–3 Alzheimer’s disease (AD) is the 

leading cause of dementia among adults aged 65 or above, resulting in progressive memory 

loss, impaired thinking and disorientation, as well as changes in personality and mood. AD 

is marked histologically by the degeneration of brain neurons, primarily in the cerebral 

cortex, and by the presence of neurofibrillary tangles and plaques containing betaamyloid.4

Physiologically, AD presents as a continuum of syndromes ranging from no cognitive 

impairment (NCI) to mild cognitive impairment (MCI), and finally to dementia.5 There is 

heterogeneity in the onset of the disease: some individuals may experience cognitive decline 

early, while for others, the onset of disease occurs later in life.1 There are a number of 

other defining features associated with the disease. First, for those who develop AD-related 

dementia, it is believed that an accelerated decline in cognitive function will occur at 

a certain time point (or “change point”) during the course of cognitive decline, leading 

ultimately to dementia.5,6 However, the timing of the change point is highly variable and 

is influenced by patient-specific factors, such as age, family history, and lifestyle factors.7,8 

It is therefore critical to monitor the occurrence of this acceleration so that clinicians and 

care providers can pursue timely treatments.9 Second, the slope before the change point 

varies: some adults may show a linear cognitive decline prior to the point of accelerated 

decline, while others may show relatively stable performance prior to the change point.10 

Third, the slope after the change point is nonincreasing, as cognitive decline progresses more 

rapidly following the change point.5 An appropriate statistical model should therefore take 

into account the above features. In particular, the model should restrict the change in slope 

following the change point to be nonpositive, with no change in slope occurring only for 

adults who do not experience or only temporarily experience cognitive decline.

Numerous random effect change point models have been formulated to examine the 

acceleration of cognitive change.5,6,9,11–13 However, this prior research has focused 

primarily on methods to characterize the decline in cognitive function for diseased patients 

only, without attempting to distinguish normal aging from diseased cognitive decline, or 

to predict the likelihood of cognitive decline in advance of clinical diagnosis. Ji et al.14 

recognized that not every older adult experiences diseased cognitive decline and developed a 

hypothesis testing approach to assess whether a biomarker change point occurred during 

long-term follow-up. If the hypothesis test confirmed the presence of a change point, 

the authors then fit a general bilinear model to estimate a global change point time for 

all individuals. However, this approach did not allow for subject-specific change points. 

Slate and Turnbull15 used a subject-specific change point model to model the growth 

of prostate-specific antigen. The authors restricted the slope after the change point to 

be larger than a fixed, positive lower bound. The purpose of this restriction was to aid 

model identifiability by ensuring that the slopes before and after the change point could be 

distinguished from one another during estimation. However, the authors assumed a separate 

normal distribution, independent of other model parameters, for the slope after the change 

point, which may be restrictive in some settings. In our application, for example, patients 

with low cognitive scores at baseline will likely have more precipitous declines following 
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AD onset compared to patients with higher baseline scores. In addition, Slate and Turnbull15 

assumed a prespecified value for the lower bound of the slope following the change point 

rather than allowing this to be estimated from the data. Through simulations, we show 

that fixing the threshold a priori can lead to poor inference if the threshold parameter is 

misspecified, which is likely in practice.

In this article, we develop a flexible model to (1) distinguish normal aging patients from 

patients with diseased cognitive decline who are not yet formally diagnosed as dementia, 

which will help to identify the profile of healthy cognitive aging and diseased cognitive 

aging, (2) estimate subject-specific change points and rates of cognitive decline, which will 

help to characterize cognitive decline, and (3) develop a prediction model to assist with 

subject-specific disease prognoses to identify patients at high risk of advancing to dementia.

The gold standard diagnosis of AD requires brain autopsy, whereby a neuropathologist 

diagnoses AD if two pathognomonic signs of AD (amyloid plaques and neuritic tangles) 

are found in brain tissue. In living patients, the diagnosis of AD is typically performed 

through clinical evaluation.16 However, as recent research shows, the sensitivity of the 

clinical diagnosis ranges from 70.9% to 93%, and the specificity ranges from 44.3% to 

91%.17,18 In addition, physicians often feel uncomfortable in providing a timely diagnosis 

of AD due to the limitation of the current diagnostic approach.19 Hence, there is a need to 

develop a prediction tool to predict the risk of disease progression to dementia in the next 

several years without increasing healthcare costs. While the clinical practicality of such a 

tool may be limited at present to research studies that collect large amounts of longitudinal 

data, such a tool might eventually assist clinicians (e.g. geriatricians, geriatric psychiatrists, 

neurologists, neuropsychologists) in deciding whether to implement treatment and care 

management plans in the hopes of delaying dementia onset and improving quality of life. 

Furthermore, this tool would aid patients in planning ahead while they are still able to make 

important decisions regarding their care, support, and financial or legal matters. In this study, 

we focus on using data from a neuropsychological test battery since these are the primary 

tools for evaluating cognitive decline. These measurements are comprehensive, less invasive, 

and provide the information needed to determine the syndromal cognitive stage. Although 

there are other biomarkers and approaches (e.g. neuroimaging) available, the majority are 

not available for routine use due to expense, risks, and the need for specialized equipment 

or laboratories.20,21 Hence, it is critical to develop statistical methods that can be easily 

implemented to improve the prognosis of cognitive decline and to help triage patients when 

deciding whether further diagnostic biomarker testing is necessary.

To address these goals, we propose a Bayesian change point model for the analysis of 

cognitive decline for older adults. Our proposed model has several attractive features. First, 

it incorporates correlated subject-specific intercepts, slopes before change points, and slopes 

after change points. Second, it constrains the difference in slope before and after change 

points to be nonpositive, since it is well documented that cognitive decline accelerates 

following the onset of AD.10,14 Third, it defines a clinically meaningful “null region” in 

which the difference in slope before and after the change point is effectively 0, representing 

NCI, where the threshold for this null region is estimated from the data rather than fixed 

at a prespecified value. While this threshold is similar in spirit to Slate and Turnbull,15 
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we use it in a fundamentally different way—namely, as a prognostic tool to determine 

the likelihood of dementia due to AD rather than as a device to ensure identifiable model 

parameters. Through simulation studies, we demonstrate that a data-driven approach to 

estimating the threshold leads to more accurate and precise parameter estimates. Fourth, the 

model allows for a random change point time for each individual. Finally, the model can 

make personalized prediction of the risk of progression to dementia due to AD as individuals 

age. For implementation, we propose an efficient Markov chain Monte Carlo (MCMC) 

algorithm that relies in large part on easily sampled Gibbs steps. Our approach can be useful 

for clinicians or researchers involved in large cohort AD research studies (such as those in 

AD research centers) as well as memory clinics where extensive longitudinal cognitive data 

are available.

In the next section, we describe the Religious Orders Study (ROS) dataset. Then, we present 

a Bayesian hierarchical random change point model with a parameter constraint and discuss 

the estimation approach. This is followed by the Simulation study section where we evaluate 

the model’s performance using a simulation study. In the penultimate section, we apply the 

approach to the data of ROS and discuss the results. We summarize the approach in the final 

section.

2 Motivating dataset: The ROS

Our analysis was based on the ROS,16 a longitudinal clinical cohort study of aging Catholic 

nuns, priests, and lay brothers from more than 40 religious orders across the United 

States. Participants without known dementia were enrolled into the study, and data were 

collected annually for more than 20years. Clinical evaluation of cognitive function was 

performed annually, and patients were categorized as NCI, MCI, or dementia due to AD 

(hereafter referred to as “AD”) at each annual visit. Clinical diagnoses were performed 

by assessment of cognitive impairment by neuropsychologists and determination of disease 

stages by clinical consensus using standard criteria.5 In general, patients’ disease stage 

could switch between NCI and MCI over the course of the study. However, because AD 

is currently an irreversible condition,22 it was unlikely for disease stage to return to either 

MCI or NCI once a patient was diagnosed as AD unless there was a misdiagnosis. The 

investigators collected measures of cognitive function (e.g. episodic memory, semantic 

memory, and working memory), motor function (e.g. manual strength, manual dexterity, and 

gait), disabilities and blood tests, genetic risk factors, and demographic and psychological 

traits. For our analysis, we used a well-validated, global measure of cognitive function 

(“global cog”) as the outcome, which is a composite score of cognitive measures.4 This 

composite score is derived from 19 tests that cover five cognitive domains, namely episodic 

memory, semantic memory, working memory, perceptual speed, and visuo-spatial ability. 

The composite scores are created by converting each test to a z-score and averaging the 

z-scores from the five domains. Higher scores indicate better cognitive function. Detailed 

information about the individual tests and the derivation of the composite measure has been 

previously reported.16,23

Figure 1 shows 3 panels of global cog functional trajectories for a 20% random sample 

of ROS patients, resulting in an analytic sample of 189 patients. We chose subsample of 
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patients for illustrative purpose and to expedite the case study presented in the Application 

to ROS data section. This random sample was more or less equally split between NCI, 

MCI, and AD patients, where disease stage was defined according to the diagnosis at the 

final clinical visit. Of these 189 patients, 13.5% of the patients reversed their disease stage 

from AD to MCI or NCI, 32.8% patients switched between MCI and NCI, 30.7% patients 

stayed at NCI, 11.6% progressed from NCI to MCI to AD, 3.7% transitioned from NCI to 

MCI, and 6.3% transitioned directly from NCI to AD based on clinicians’ assessments over 

the course of the study. The global cog scores ranged from –4 to 2 in the entire available 

ROS data. As expected, participants with NCI tended to have higher scores compared to 

patients with MCI and AD, with the mean score at the last clinical visit of 0.44, while 

MCI patients generally had higher scores than AD patients with the mean score of –0.24. 

For AD patients, the mean score at the last clinical visit is –1.75. Although no participants 

had known AD-type dementia at enrollment, over the course of the study, some participants 

appeared to develop disease more rapidly than others. The left panel shows global cog 

scores for the NCI participants. The scores fluctuated between –1 and 2, but overall, there 

was no downward trend in the trajectories. For MCI patients (the middle panel), the global 

cog measurements fluctuated between –2 and 1, suggesting increased cognitive impairment, 

with a slight downward trend over time. For AD patients (the right panel), the global cog 

measurements fluctuated between –4 and 1 and generally showed a sharp decline at some 

point during the study, potentially heralding the onset of AD.

3 Model and estimation

3.1 Model

In this section, we describe a Bayesian constrained random change point model for cognitive 

functional trajectories. For each individual, we estimate if and when a change point occurs, 

as well as the slope before and after the change point. Our model allows for individuals 

to have unique random intercepts, random slopes before the change points, random change 

point times, and random slopes after the change points. The slope difference before and after 

the change point is constrained to be nonpositive, as we expect a more precipitous decline 

following the change point. However, we do not constrain the slope before the change point 

since its pattern varies.10 Thus, our model enables us to achieve two goals simultaneously: 

(1) to identify whether an individual’s cognitive trajectory experiences a change point during 

the follow-up and (2) to estimate the rate and timing of rapid cognitive decline if a change 

point occurs.

We consider a piecewise-linear random change point model characterized by potentially 

different slopes before and after a random change point

Y ij = β1i + β2itij + β3i tij − κi + + zij′ β4i + ϵij (1)

where for individual i = 1, …, n at follow-up visit j = 1, …, ni, Yij is the continuous outcome 

measure (e.g. global cog), tij is the measurement time, zij is a m × 1 vector of individual level 

predictors (i.e. age and education), w+ = w if w ≥ 0 and 0 otherwise, ki denotes an unknown 

random change point, and ϵij is an error term, which follows a normal N 0, σϵ2  distribution; 
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alternative distributions, such as the skew normal or finite mixture models, could be used to 

accommodate additional features of the data, such as skewness or multimodality.

Because AD onset has a high degree of heterogeneity in its progression, we use subject-

specific parameters for all terms in the model. For individual i, β1i denotes the random 

intercept, β2i is the random slope before the change point ki, and β3i is the difference in 

random slopes before and after the change point ki. For brevity, we refer to β3i below 

as simply the “slope decrement” after the change point ki. As previous research has 

shown, cognitive decline accelerates after the change point for AD patients, but cognitive 

trajectories are relatively stable for normal aging patients. Hence, we assume that the 

slope decrement β3i is less than or equal to zero, which ensures clinically and statistically 

meaningful estimation for the slope after the change point. The parameter β4i is the m × 1 

vector of coefficients corresponding to the predictors zij. The conditional likelihood function 

of Y = yij  given all parameters and data xij = 1, tij, tij − κi +, zij′ ′ and X = xij , which is 

an N × q matrix, where N = ∑i = 1
n ni, is

L Y ∣ β, κ, σϵ2, X = ∏
i = 1

n
∏

j = 1

ni 1
2πσϵ

exp − 1
2σϵ2

yij − xij′ βi
2

where κ = κ1, κ2, …, κn ′ and β = β1′ , β2′ , …, βn′ ′ in which βi = βi1, βi2, βi3, βi4′ ′ is a q × 1 

vector of regression parameter. The conditional likelihood can be maximized subject to 

the constraint β3i ≤ 0 for i = 1, 2, …, n. However, calculation of the maximum likelihood 

estimator subject to constraints is often difficult,24 since estimates of β3i for individuals 

without cognitive impairment fall on the boundary of the parameter space (i.e. β3i is equal 

to or close to 0). Hence, we use Bayesian methods for parameter estimation, since order 

constraints can be readily incorporated into the prior distributions for the model parameters.

3.2 Prior specification

For normal aging individuals, the slopes after the change points may be minimal, in which 

case we can ignore their effects. However, it is not practical to assume the slope decrement 

is exactly equal to zero. Instead, we introduce a “null region” within which the effect is 

negligible, representing stable cognitive trajectories. We follow Neelon and Dunson25 to 

select a prior distribution for β which achieves the following two goals simultaneously: (1) 

constrains the trajectory to be nonincreasing after the change point and (2) allows for a null 

region. Hence, we express the constrained slope decrement for patient i, β3i, in terms of a 

latent, unconstrained slope decrement β3i
∗ , namely, we set β3i = 11 β3i

∗ < δ β3i
∗ , i = 1, 2, …, n, 

where δ is a threshold parameter representing clinically relevant cognitive decline, and 

11 .  is the indicator function. This representation facilitates posterior computation because 

it is often easier to sample from an unconstrained conditional distribution and apply a 

suitable constraint as part of the MCMC algorithm than it is to draw directly from a 

constrained posterior itself.26 The parameter β3i
∗  is an unconstrained latent slope decrement, 
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and d is a small negative threshold above which the slope decrement β3i
∗  is effectively 

zero. Specifically, for individual i, if β3i
∗ < δ then βi = βi

∗ = β1i
∗ , β2i

∗ , β3i
∗ , β4i

∗ ′ ′, which ensures 

feature (1); otherwise if δ ≤ β3i
∗ ≤ 0, then βi = βi0

∗ = β1i
∗ , β2i

∗ , 0, β4i
∗ ′ ′ here, we set β3i = 0

to ensure feature (2). We choose a conditionally conjugate MVN β0, Σβ  prior for the 

unconstrained parameter βi
∗, where β0 is the population mean, and Σβ is an unstructured 

covariance matrix that accounts for dependence in the model parameters. This is relevant in 

our application, as we expect AD patients have much steeper slopes before and after change 

points compared to the MCI and NCI patients.5 More formally, given the threshold δ, the 

joint prior for β, β∗  is

π β, β∗ ∣ δ, Σβ, β0 = ∏
i = 1

n
π βi, βi

∗ ∣ δ, Σβ, β0

= ∏
i = 1

n
11 β3i

∗ < δ 11 βi = βi∗ + 11 δ ≤ β3i
∗ ≤ 0 11 βi = β0

∗ MVN β0, Σβ

(2)

where β∗ = β1
∗ ′, β2

∗ ′, …, βn
∗ ′ ′. Equation (2) represents a mixture of a point mass at 0 

when δ ≤ β3i
∗ ≤ 0 and a truncated multivariate normal distribution (MVN) when β3i

∗ < δ. 

This mixture prior approach is similar to spike- and-slab variable selection and offers a 

computationally efficient alternative to dimension-switching approaches such as reversible 

jump.27 Essentially, we fit a fully parameterized model that includes the decrement slope, 

β3i, but allow β3i to equal zero if the unconstrained slope, β3i
∗  falls within the null region. 

Thus, the dimension of the odel stays fixed, but the prior structure for β3i is a mixture 

distribution whose sample space encompasses a point mass at zero. In this way, we partition 

the constrained parameter space for the slope decrement, β3i, into two regions: (1) [δ, 0], 

corresponding to individuals whose β3s fall into this null region and who do not experience 

cognitive impairment and (2) ( − ∞, δ), corresponding to individuals whose β3s fall into this 

rejection region and who experience AD-type cognitive decline. By using this joint prior in 

equation (2), we simultaneously estimate oth the slope decrement β3, which guarantees the 

stable or downward trend in cognitive trajectories, and the threshold δ of the null region, 

which encourages flatness in the trajectories for patients without clinically relevant cognitive 

decline.

To complete the prior specification and ensure an identifiable model, we assign an MVN 

(0, Ω) prior for the population mean β0. For Σβ, we assign an inverse-Wishart IW(ν, Γ) prior 

where v is the degree of freedom. Throughout, we assume that Ω and Γ are known scale 

matrices (e.g. the q × q identity matrix, Iq, where q represents the dimension of β0). We 

assign an inverse-gamma IG aϵ, bϵ  prior for σϵ2 To be consistent with prior research,5,28 

we assume κi ∼ N μκ, σκ2  truncated between 3 and 8 for i = 1, 2, …, n likewise, we assume 

δ ∼ N μδ, σδ
2  truncated between –0.1 and 0, which provides a clinically meaningful null 

region. Thus, unlike previous work involving change point models, we allow the threshold 

parameter to be estimated from the data rather than fixed a priori. Using simulation studies, 
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we demonstrate below that estimating d rather than fixing it a prespecified value generally 

improves inferences.

3.3 Posterior

For posterior computation, we adopt an efficient MCMC algorithm that combines Gibbs 

steps and Metropolis-Hastings steps. Conditional on the data yij, xij  i = 1, 2, …, n and 

j = , 1, 2, …, ni, the joint posterior density of parameters β, Σβ, κ, σϵ2, β0, the latent variable 

β∗, and δ is proportional to

∏
i = 1

n
∏

j = 1

ni
N yij; βi, σϵ2, xij, κi π βi, βi∗ ∣ δ, Σβ, β0 π β0 π(δ)π κi π Σβ π σϵ2

= ∏
i = 1

n
∏

j = 1

ni
N yij; βi, σϵ2, xij, κi π β0 π(δ)π κi π Σβ π σϵ2

11 β3i
∗ < δ 11 βi = βi∗ + 11 δ ≤ β3i

∗ ≤ 0 11 βi = βi0
∗ MVN β0, Σβ

where π βi, βi
∗ ∣ δ, Σβ, β0  is defined in equation (2), π β0  is a prior for β0, π(δ) is a prior of 

δ, π κi  is a prior for the change point, π Σβ  is a prior for Σβ and π σϵ2  is a prior for σϵ2. The 

full conditional distributions for β0, Σβ, and σϵ2 have straightforward conjugate forms. We 

estimate κi(i = 1, 2, …, n) using a Metropolis-Hastings step. Averaging ki over the course of 

the MCMC algorithm results in a smooth posterior estimate of the mean egression function, 

reflecting our intuition that the change point is not instantaneous but instead represents 

a smooth transition (or “bent cable”) occurring over a short period of time.29 Following 

Neelon and Dunson,25 we update the threshold parameter d, the latent slope decrements 

β3i
∗ (i = 1, …, n), and the observed slope decrements β3i(i = 1, …, n) jointly using a Metropolis-

Hastings step. Thus, after setting initial values, the sampler iterates through the following 

steps:

1. Sample σϵ2 from its inverse gamma full conditional

2. Sample Σβ from its inverse-Wishart full conditional

3. Sample κinew(i = 1, 2, …, n) from an N κiold, σκ∗ 2  truncated between 3 and 8. 

Accept or reject the candidate κinew using a random walk Metropolis-Hastings 

step

4. Sample β0 from its multivariate normal full conditional

5. Update δ, β, β∗ in one block as follows:

a. Sample a candidate value of δnew from an N δold, σδ
∗ 2  truncated 

between –0.1 and 0
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b. For i = 1, 2, …, n, sample βi
∗ new new from its unconstrained MVN full 

conditional, and if β3i
∗ new < δnew then set βi

new = βi
∗ new; otherwise, if 

δnew ≤ β3i
∗ new ≤ 0, then set βi

new = βi0
∗ new

c. Accept or reject the candidate δnew, βnew = β1
new′, …, βn

new′ ′ and 

β ∗ new = β1
∗ new′, …, βn

∗ new′ ′ in one block with a Metropolis-Hastings 

step

6. Repeat steps 1 to 5 until convergence and calculate posterior summaries based on 

a large number of iterations.

MCMC convergence is monitored by trace plots, and the model fitting is assessed by 

standardized residual plots. The detailed MCMC algorithm (including priors and posteriors) 

is described in Online Appendix A. R code (https://www.r-project.org) for fitting the model 

is available from the first author.

3.4 Personalized prediction of disease progression to AD

In the following, we illustrate how to use the proposed approach to identify patients at 

high risk to progress to AD at various stages during the follow-up period. Our approach 

can be applied when extensive longitudinally measured cognitive data are available (such 

as AD research centers and some memory clinics). Additionally, clinicians with access to 

longitudinal data can use the model to predict the risk of progressing to AD and to adjust 

patients’ treatment plans accordingly at each follow-up visit.

Suppose we wish to predict the probability of progression to AD for a new patient i at visit 

j. We first fit model 1) using the longitudinal cognitive measurements for patient i up to 

and including visit j (i.e. we observe only the first j measurements for patient i), together 

with the available data for the remaining patients. Let β3ij
∗  denote the latent slope decrement 

following the change point for patient i at visit j, and let δj be the corresponding threshold 

indicating the null region boundary. At each MCMC iteration, we compare β3ij
∗  with δj to 

decide whether β3ij
∗  falls into the null region or the rejection region. We then estimate the 

probability, pij, of β3ij
∗  falling inside the rejection region (i.e. 11 β3ij

∗ < δj = 1 at visit j over 

the course of the MCMC iterations. If individual i does not experience a change point at visit 

j, the majority of the β3ij
∗ s will fall into the null region (i.e. the majority of β3ij = 0) and the 

corresponding posterior mean probability pij will be small; otherwise, if individual i does 

experience a change point at visit j, the majority of the β3ij
∗ s will fall inside the rejection 

region (i.e. the majority of β3ij = β3ij
∗ ), and the corresponding posterior mean probability pij

will be large. Hence, pij provides an estimate of AD risk at visit j. By refitting the model 

for various choices of j, we can monitor the changes in the probability of progression to AD 

over the course of the follow-up.

Li et al. Page 9

Stat Methods Med Res. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.r-project.org/


4 Simulation study

4.1 Simulation model

To evaluate the proposed model, we conducted a simulation study, applying the method 

to 100 simulated patients in which 50 observations whose cognitive functional trajectories 

encounter change points (i.e. labeled “AD” patients) and the other 50 observations whose 

cognitive functional trajectories do not encounter change points (i.e. labeled “non-AD” 

patients). To illustrate how to fit the model with predictors, we added two risk factors: age 

at enrollment centered at 76 years old and years of education as a continuous variable. We 

generated data using the following model

Y ij = β1i + β2itij + β3i tij − κi + + β4iagei + β5ieducationi + ϵij (3)

where i = 1, 2, …, 100, j = 1, 2, …, ni. We first made assumptions similar to the preliminary 

results from the ROS data,5 which we refer to Scenario 1. For each individual i, we 

generated the number of annual visits, ni, from a discrete uniform U[7, 15] distribution, 

the change point ki followed an N(5, 1) truncated between years 3 and 8, the error term 

ϵij followed an N(0, 0.05), and the years of education followed a uniform distribution 

U½5; 25]. For observations with change points, we assumed that age followed an N(85, 64), 
and the parameter βi(i = 1, 2, …, 50) followed an MVN β0, Σβ  in which the population 

mean β0 = ( − 0.18, − 0.05, − 0.3, − 0.04, 0.04)′. For observations without change points, we 

assumed that age followed an N(72, 64), and the parameter βi(i = 51, …, 100) followed 

an MVN β0, Σβ  in which the population mean β0 = ( − 0.18, − 0.05, 0, − 0.04, 0.04)′. The 

specification for Σβ is provided in Online Appendix B, which resulted in heterogeneity 

similar to the ROS data. We assumed the threshold for the null region δ = − 0.05 and 

β3 = − 0.3 for AD patients to be consistent with the results in Yu et al.5 To assess the 

robustness of the model, we simulated two additional scenarios, denoted as Scenarios 2 

and 3, in which we increased the variability in the data and changed the value of δ to 

accommodate different null regions (see Online Appendix B).

When fitting model (3), we assumed independent MVN β0, Σβ  priors for the random effects 

βi
∗, an MVN 0, I5  prior for β0, an IG(0.001, 0.001) prior for σϵ2, and an IW(5, I5) prior 

for Σβ. We ran the model for 20000 MCMC terations with a burn-in of 5000, which 

was sufficient to ensure convergence based on trace plots and to verify that the normality 

assumption held based on the standardized residual plot.

4.2 Results

Table 1 presents the posterior means and 95% credible intervals (CIs) for the model 

parameters in Scenario 1, where δ = − 0.05, ρ = 0.1 and σϵ2 = 0.05. The estimated population 

mean, β0, and the estimated threshold of the null region, δ = − 0.05 (with acceptance rate of 

60%), are close to the true parameter values, and the 95% Cis overlap with the true values 

used in the simulation.
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Figure 2 shows the simulated and estimated trajectories. This figure clearly demonstrates 

the adequate model fit, with the estimated average trajectories overlapping with the 

simulated average trajectories very well for both AD and non-AD patients. Figure D1 in 

Online Appendix D presents the simulated trajectories (blue dot curves) and the estimated 

trajectories (red long-dash curves) for six individuals. The figure shows that the estimated 

trajectories closely mimic the simulated trajectories. Specifically, AD patients 5, 25, and 42 

experience change points in which the β3s are –0.17, –0.25, and –0.65, respectively, which 

are outside the null region. The follow-up times for these patients are 14, 15, and 15 years. 

Non-AD patients 69, 70, and 93 do not experience change points during their follow-up 

periods, which ranged from 14 to 15 years. As expected, the β3s for these individuals 

are –0.001, –0.0003, and –0.02, which are inside the null region. Finally, the standardized 

residual plot in Figure D2 of Online Appendix D follows a standard normal distribution, 

indicating that the normality assumption holds.

To assess the robustness of the model performance given the nature of the disease and 

covariates in the model, we simulated additional scenarios, denoted as Scenarios 2 and 

3 (details are provided in Online Appendix B). Scenario 2 corresponds to δ = − 0.1, Σβ
taking the same values as in Scenario 1, and σϵ2 = 0.5, which implies greater within-subject 

variability relative to Scenario 1. Scenario 3 corresponds to δ = − 0.05, σϵ2 = 0.05, ρ = 0.2 and 

the diagonal elements in Σβ taking the values given in Scenario 1, leading to higher random 

effect correlation compared to Scenario 1. As shown in Table 1, for both scenarios, the 

estimated model parameters closely mimic the true values, with 95% CIs overlapping with 

the true values in all cases (Scenarios 2 and 3 in Table 1). Figure D3(a) and (b) in Online 

Appendix D, which is similar to Figure 2, presents estimated trajectories for Scenario 2 and 

3, respectively. Both panels clearly demonstrate satisfactory model fit in which the estimated 

average trajectories overlap with the simulated average trajectories very well for all cases. 

Figure D4 in Online Appendix D presents estimated global cog trajectories for six patients 

under Scenario 2 (Panel (a)) and Scenario 3 (Panel (b)). Again, the simulated trajectories 

and the estimated trajectories mirror one another. Figure D5 in Online Appendix D presents 

the standardized residual plots for Scenario 2 (Panel (a)) and Scenario 3 (Panel (b)). Both 

residual plots follow a standard normal distribution indicating that the normality assumption 

holds.

Finally, we conducted simulations to compare our approach to that of Slate and Turnbull,15 

which prespecifies the threshold parameter, δ, and assumes that the random effect β3i is 

uncorrelated with other random effects in the model. We selected four settings for the 

correlation between β3i(i = 1, …, n) and other random effects in the model, denoted by ρ*, 

and for the prespecified value of d that reflects an “informed guess” as to the true, unknown 

δ value:

• Setting 1a: ρ* = 0, true δ = prespecified δ = −0.05. This scenario most closely 

conforms to the approach of Slate and Turnbull.15

• Setting 1b: Same settings as in (1a) but with a misspecified δ of –0.03 under the 

approach of Slate and Turnbull.15
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• Setting 2a: ρ* = 0:2, true δ = prespecified δ = −0.1. This scenario corresponds to 

a modest correlation between the random effects.

• Setting 2b: Same settings as in (2a) but with a misspecified δ of –0.15 under the 

approach of Slate and Turnbull.15

For each setting, we assumed β01 = − 0.18, β02 = − 0.05, β03 = − 0.3, β04 = − 0.04 and 

β05 = 0.04. For Settings a and 1b, where ρ∗ = 0, we assumed that β1i, β2i, β4i, β5i ′ followed 

an MVN distribution with mean β01, β02, β04, β05 ′ and covariance matrix taking the values 

of Scenario 1 in Online Appendix B. We further assumed an N β03, σ33
2  distribution for β3i, 

where σ33
2  is given in Scenario 1 of Online Appendix B. For Settings 2a and 2b, where 

ρ* = 0.2, we assumed that β1i, β2i, β3i, β4i, β5i ′ followed an MVN distribution with mean 

β01, β02, β03, β04, β05 ′ and covariance matrix taking values given in Scenario 1 of Online 

Appendix B with the common correlation of ρ*. These two settings have the assumed true 

δ = − 0.1, which is different from the above Scenario 3. We then compared the model of 

Slate and Turnbull15 to our approach in which δ was estimated as part of the MCMC 

algorithm.

Table C1 in Online Appendix C presents the posterior means and 95% CIs for the model 

parameters using both approaches. As expected, when d is incorrectly specified under the 

approach of Slate and Turnbull,15 the parameter estimates deviate from their true values, 

and the 95% CIs often fail to cover the true parameter values. These trends increase 

as the random effect correlation increases. In contrast, under the proposed approach, the 

parameter estimates are generally more accurate, and the 95% CIs are more precise. 

For example, under Setting 1b, where ρ* = 0, the true δ = −0.05, and the prespecified 

δ = −0.03, which is only a small deviate from the true δ, under Slate and Turnbull15 

approach, β03 = − 0.21(95%CI = [ − 0.24, − 0.18]), which fails to cover the true value of –

0.30. Although β02 and σϵ
2 are not far away from the true values, their 95% CIs overlap 

with the true values at one of the boundaries. Conversely, under the proposed approach, 

β03 = − 0.23(95%CI = [ − 0.32, − 0.14]), and all other parameter estimates are quite accurate 

with correct posterior intervals around the true values. Even when we correctly specified the 

δ value, the approach of Slate and Turnbull15 did not always yield accurate estimates and 

correct posterior intervals, since it fails to consider the correlation between the random slope 

after the change point and other random effects in the model. For example, under Setting 2a, 

where ρ∗ = 0.2 and δ is correctly specified at −0.1, β03 = − 0.36(95%CI = [ − 0.41, − 0.32]), 

which fails to cover the true value of –0.30. In addition, β02 and σϵ
2 are away from the 

true values and the corresponding 95% CIs fail to cover the true values. In contrast, under 

the proposed method, β03 = − 0.34(95%CI = [ − 0.41, − 0.20]), which achieves the proper 

estimate and posterior interval encompassing the true value. All other parameter estimates 

are quite accurate with proper posterior intervals. Taken together, these results highlight 

the importance of estimating the threshold parameter during model fitting and taking into 

account the potential correlation among all model parameters.
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5 Application to ROS data

Next, we applied model (3) to the random sample from the ROS dataset. The follow-up time 

for each individual ranged from 7 to 15 years. We also included age at enrollment (centered) 

and years of education in our analyses, as these are known predictors of cognitive decline.5 

Among those 189 patients, the percentage of NCI, MCI, and AD patients diagnosed at the 

last clinical visit was 32%, 37%, and 31%, respectively. The average year of education was 

15.5 years ranging from 5 to 26 years, and the average age at enrollment was 76.9 years old 

ranging from 56.7 to 91.3 years old.

5.1 Model fitting

We fit the model based on the estimation approach presented in the Model and estimation 

section. We assumed an MVN(0; 1000 × I5) prior for β0, an IG(0.001, 0.001) prior for σϵ2, an 

MVN β0, Σβ  prior for βi
∗, and an IW(5, 0.01 × I5) prior for Σβ.

We ran the MCMC algorithm for 20,000 iterations with a burn-in of 5000. The acceptance 

rate for estimating κi ranged from 47% to 49%, and the acceptance rate for δ was 46%. 

The standardized residual plot (Panel (a) of Figure D6 in Online Appendix D) follows a 

standard normal distribution, and the trace plot (Panel (b) of Figure D6 in Online Appendix 

D) shows adequate mixing for all parameters. The posterior population mean and 95% 

CI for each component of β0 are presented in Table C2 of Online Appendix C. Age at 

enrollment and years of education are significant predictors of AD. The posterior mean of 

the threshold for the null region δ = − 0.05, which is consistent with previous research.5 

Figure 3 shows individual trajectory plots for six patients from the ROS data (blue dotdash 

curves), estimated trajectories (red long-dash curves), and 95% credible bands (shaded area), 

which follow the trend of and overlap with the observed sample trajectories; p represents the 

estimated probability of progression to AD at the 11th visit using the prediction algorithm 

described in the Personalized prediction of disease progression to AD section.

5.2 Potential clinical usage: Personalized risk prediction

Next, we used the model to predict the risk of disease progression to AD on another 

randomly selected sample. For brevity, we illustrate the approach by randomly selecting 14 

new patients from different stages of disease progression. For these patients, seven were 

diagnosed as AD (the top seven patients in Table 2), three patients’ disease stage switched 

between NCI and MCI (the middle three patients in Table 2), and four were NCI during the 

course of the study (the bottom four patients in Table 2). We present the prediction results 

for additional 18 patients (6 patients in each disease stage) in Table C3 of Online Appendix 

C, which has the same structure as Table 2. We repeatedly fit model (3) combining these 

new patients with the 189 patients from the previous analysis. We first fit the model using 

their global cog measurements from the first six visits (measurements at baseline and the 

first five follow-up visits), which allowed sufficient time for patients to experience potential 

change points. We then fit the model again using their global cog measurements from the 

first seven visits (global cog measurement at baseline and the first six follow-up visits), and 

repeatedly fitting model (3) with additional observations up to follow-up visit eight, nine, 
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and so on until first AD diagnosis or the eleventh visit for the non-AD patients, where the 

eleventh visit is the maximal follow-up time for seven AD patients.

In the following, we suppress the time index j and the individual index i for β3 and p. Table 

2 presents the posterior mean of the slope decrement, along with p (as a %), the estimated 

personalized risk of progression to AD, from the sixth to the eleventh visit. By repeatedly 

fitting model (3) with additional global cog measurements at each follow-up visit, the slope 

decrement, β3, and the probability of progression to AD, p, were updated.

Using both the posterior means of β3 and p at each follow-up visit, we can obtain 

information about patients’ ikelihood of progression to AD. For example, for patient 

50108200, at the sixth visit, β3 is just outside the null region (where δ  = −0.044 at visit 

6), and p is 53%. At the seventh visit, β3 decreases, and p increases slightly. At the eighth 

visit, p has a relatively larger jump compared to the previous visits, but β3 is not far from 

the null region. These findings may indicate the onset of cognitive decline for this patient. 

However, at the ninth visit compared to the estimates at the previous visits, β3 jumps to 

−0.11, which is a steeper decline and is farther away from the null region. Additionally, p is 

79%, which represents a relatively large increase compared to the sixth to the eighth visits. 

These results indicate that this patient’s cognitive decline continues the trend we observed at 

the eighth visit. Hence, we can view this as an early warning sign of cognitive impairment. 

At the tenth visit, p is 95%, which is a stronger warning of cognitive decline. Clinicians 

may consider more frequent visits or enhanced treatments to mitigate the cognitive decline 

for this patient. At the tenth and eleventh visits, β3s bound well away from the null region, 

and ps are nearly 100%. These estimates are in concordance with the clinical diagnosis of 

AD at the eleventh visit. However, our model is able to provide an early warning of serious 

cognitive decline at least three years before the actual diagnosis of AD for this patient. For 

patients 50102790, 50103679, 81874628, 64336939, and 20195344, the model provides a 

strong warning of cognitive decline (p > 80% and β3 far away from the null region) at the 

seventh, sixth, sixth, ninth, and eighth visit, respectively, well in advance of their actual AD 

diagnoses.

In some cases, there is a discrepancy between the model prediction and clinical diagnosis. 

For example, patient 59796318’s first AD diagnosis was at the eighth visit. However, the 

model’s suggestion is different. The estimated posterior mean of β3 and p at the eighth 

visit are –0.09 and 72%, which is a suggestive but not conclusive indication of progression 

to AD. In fact, the AD diagnosis at the eighth visit was a misdiagnosis: this patient was 

subsequently followed for two more visits and the disease stage was NCI at the ninth visit 

and MCI at the tenth visit. Thus, the proposed method could be used to identify potential 

misdiagnoses when the model predictions disagree with clinical assessments.

For the three patients whose disease stage switched between NCI and MCI, the posterior 

means of β3s and ps fluctuate along with their global cog trajectories, which indicates 

that our model is able to capture subtle cognitive changes and the switch of the disease 

stage from time to time. Consider, for example, patient 5632732. At the sixth and seventh 

Li et al. Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2022 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



visits, β3s for this patient are just outside the boundary of the null region, and ps are less 

than 50%. However, at the eighth visit, p jumps to 74% compared to that of 44% at the 

seventh visit, and β3 is farther away from the null region, which can be viewed as an early 

warning of cognitive decline. At the ninth visit, p increases to 83%, which is a strong 

indication of cognitive decline. Clinicians may wish to monitor this patient more often, 

prescribe enhanced medications, or recommend behavioral therapies. For patient 50108912, 

the cognitive trajectory fluctuates over a larger range. In particular, p at the tenth visit is 

more than 85%, and it reaches nearly 90% at the eleventh visit, which is a convincing 

evidence of serious cognitive decline. Although this patient was not diagnosed as AD during 

the course of the study, our results suggest the potential for AD onset during the study. As a 

result, clinicians may want to adjust the treatment and monitoring schedule for this patient to 

delay or prevent the onset of AD.

Among the NCI patients, one patient (ID 5218242) might experience temporary cognitive 

decline at the sixth visit with β3 = − 0.11, which is outside the null region, and p = 77%. 

These larger estimates may be also due to the learning stage of the model when we fit 

the model using a shorter trajectory. However, this patient’s cognitive function gradually 

returned to normal, as β3 is gradually absorbed back into the null region and p decreases. 

Clinicians may therefore consider monitoring this patient annually according to routine 

protocol. For one patient (ID 10100600), the cognitive function was relatively stable 

throughout the follow-up period: the posterior means β3s  are close to the boundary δ , 

and ps are less than 60% for visits 7 to11. Clinicians and AD researchers may choose to 

monitor this patient according to the current annual schedule until they see more severe 

signs of cognitive decline.

The last patient (ID 31813134) was diagnosed as NCI at the last visit. However, the model 

results suggest this patient may experience AD earlier in the study. In particular, the slope 

decrement β3 decreases steadily from the eighth visit to the eleventh visit, where β3 = − 0.14
is well outside the null region. The estimated probability p steadily increases over time from 

82% at the tenth visit to 94% at the eleventh visit, which is a convincing sign of progression 

to AD. For this scenario, clinicians may consider monitoring this patient more frequently to 

avoid potential misdiagnosis, which may delay treatment and jeopardize the patient’s quality 

of life. More generally, when there is a discrepancy between clinical diagnosis and what 

model suggests, clinicians may need to pay special attention to the patient.

6 Discussion

In this paper, we proposed a Bayesian hierarchical random change point model with a 

parameter constraint in which we allow for a random intercept, random change point 

time, random slope before the change point, and random slope after the change point. The 

parameter space for the difference in slope before and after the change point was constrained 

and partitioned into a null region, representing NCI, and a rejection region, representing 

diseased cognitive impairment. Using this model, we can (1) distinguish normal aging 

individuals from individuals experiencing diseased cognitive impairment, (2) characterize 
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the rate and timing of the cognitive decline if individuals’ cognitive functional trajectories 

encounter change points, and (3) identify patients at high risk of progression to AD 

using both the difference in slope estimates and the probability of advancing to AD. The 

simulations and the real application illustrate that the proposed model works very well in 

terms of model fitting and prediction. The model is robust to different parameter values, 

and estimating the threshold is preferable to assuming a fixed value, as the latter may be 

misspecified in practice.

Most importantly, the proposed model provides an additional tool to assist clinical 

evaluation for AD patients. Using the model, we are able to predict the subject-specific 

probability of progression to AD at various time points by measurements available only 

from cognitive measurements. Using this predicted probability together with the subject-

specific change point and the rate of cognitive decline, clinicians can be assisted to (1) 

identify individuals with high risk of progression to AD several years before the actual 

event, (2) adjust individuals’ treatment plan and follow-up visit plan accordingly, which 

may hopefully delay disease progression and improve patients’ quality of life, and (3) use 

the model results as an additional tool to assist the diagnosis, particularly when there is a 

discrepancy between the clinical diagnosis and the model’s suggestion about the changes 

in cognitive trajectories, thus potentially avoiding misdiagnoses and improving patients’ 

quality of life.

Because AD is a nonreversible disease with no cure, it is critical to identify individuals 

at high risk of progression to AD. Doing so may prompt patients and clinicians to 

better understand their patient’s risk factors and identify effective medication regimens or 

behavioral therapies that may prevent or delay disease progression. For example, patients 

can increase their physical activity, eat a heart- (and brain-) healthy diet, quit smoking, and 

initiate cognitive training to enhance memory, reasoning, and speed of processing.30

While the widespread clinical use of our method may be several years away, the approach 

might find more immediate application in AD research centers or memory clinics where 

extensive longitudinal cognitive data are available for clinicians or researchers involved in 

large cohort AD research studies. Thus, for the time being, the target population might 

be limited to participants in those large-scale AD research cohort studies and any patients 

with memory concerns referred by their primary care doctors to clinicians. Despite these 

limitations, we believe the method will have growing impact as a way to assess patients 

longitudinally in a noninvasive manner in order to make predictions for the potential onset 

of dementia. This goal aligns with NIH AD diagnostic guidelines (https://www.nia.nih.gov/

health/alzheimers-disease-diagnostic-guidelines), which states that “clinicians should obtain 

long-term assessment of cognitive whenever possible to gain evidence of progressive 

decline.”

There are a number potential extensions of this work. First, future extensions of this work 

could focus on testing these models using cognitive screening instruments (e.g. MMSE, 

MiniCog) which, while less sensitive than a neuropsychological test battery, are more widely 

available. Second, the model could be expanded to include two change points and more 

complex order constraints. This model could be useful since the cognitive measurements 
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could encounter two change points. Because the process of AD is from NCI to MCI, 

and eventually to AD, the first change point could happen at the time when the disease 

switches from NCI to MCI, and the second change point could happen at the time when 

the disease transfers from MCI to AD. In this case, our model can be extended to include 

three slopes: the slope before the first change point (α1), the slope between the first and the 

second change point (α2), and the slope after the second change point (α3). We could add 

order constraints on these slopes, for example, α1 ≥ α2 ≥ α3. Third, we could incorporate 

imaging or other biomarker data together with clinical evaluation measurements and fit a 

joint model of multiple outcomes to improve the predictions. Finally, we could model the 

random change point, κi, as a function of certain predictors by fitting a truncated normal 

regression, with the mean as a function of predictors instead of a fixed value.

A complementary approach would be to model the data via a hidden Markov model 

(HMM)31 which could include measurements available beyond clinical evaluation (e.g. 

neuroimaging data). Under this approach, patients’ disease stage could transition between 

NCI and MCI and to AD over the course of the study. Conditional on a patient’s disease 

state at time t, we could model cognitive impairment score. The HMM model could be used 

to determine when patients transition to the “absorbing” AD state, which might be used to 

facilitate clinical practice.

There are some limitations of the proposed approach. First, in the Potential clinical usage: 

Personalized risk prediction section, we illustrate how to use the proposed method to predict 

disease progression using estimated values of β3 and p. While our assessments of β3 and p
are at present qualitative in nature, working with clinical investigators, it may be possible to 

derive clinically meaningful thresholds for these values. Second, the proposed model needs 

longitudinal data to run, and these data may not be widely available outside of large-scale 

longitudinal cohort studies, although some of these have publicly available data that might 

support the use of our model. Additionally, in memory disorder clinics where patients are 

annually seen with cognitive assessments, reviewing electronic health records or certain 

algorithms (for example, Natural language processing algorithm) may be used to extract 

relevant clinical data (e.g. cognitive test scores and other clinical data that are collected over 

time). In general, we anticipate that the model will find increasing value in settings where 

longitudinal data related to cognitive decline are available.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cognitive function trajectories for patients diagnosed with NCI, MCI, and AD at the final 

clinical visit for the sample of 189 patients in the ROS data.

NCI: no cognitive impairment; MCI: mild cognitive impairment; AD: Alzheimer’s disease.
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Figure 2. 
Estimated and simulated average cognitive trajectories for Scenario 1 in the simulation 

study.

AD: Alzheimer’s disease
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Figure 3. 
Observed and estimated trajectories for six selected patients from the ROS study. Shaded 

regions denote 95% credible bands.
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Table 1.

Simulated and posterior mean parameter estimates for simulation study for Scenarios 1, 2, and 3.

Parameter True value Posterior mean (95% CI)

Scenario 1: δ = −0.05, σϵ2 = 0.05, ρ = 0.1, and Σβ with Specification 1

β1 −0.18 −0.20 [−0.45, 0.06]

β2 −0.05 −0.05 [−0.06, −0.04]

β3 −0.30 −0.26 [−0.32, −0.21]

β4 −0.04 −0.05 [−0.06, −0.035]

β5   0.04   0.04 [0.02, 0.06]

σϵ2   0.05   0.05 [0.049, 0.06]

δ −0.05 −0.05 [−0.07, −0.03]

Scenario 2: δ = −0.1, σϵ2 = 0.5, ρ = 0.1, and Σβ with Specification 1

β1 −0.18 −0.16 [−0.40, 0.13]

β2 −0.05 −0.06 [−0.08, −0.03]

β3 −0.30 −0.28 [−0.32, −0.23]

β4 −0.04 −0.05 [−0.06, −0.027]

β5   0.04   0.04 [0.02, 0.06]

σϵ2   0.5   0.48 [0.45, 0.53]

Δ −0.1 −0.10 [−0.11, −0.09]

Scenario 3: δ = −0.05, σϵ2 = 0.05, ρ = 0.2, and Σβ with Specification 1

β1 −0.18 −0.18 [−0.52, 0.09]

β2 −0.05 −0.05 [−0.06, −0.04]

β3 −0.30 −0.26 [−0.31, −0.21]

β4 −0.04 −0.05 [−0.06, −0.03]

β5   0.04   0.04 [0.02, 0.06]

σϵ2   0.05   0.05 [0.048, 0.06]

δ −0.05 −0.05 [−0.06, −0.04]

CI: credible interval. 95% CIs are given in parentheses.
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Table 2.

Clinical usage: individual risk of progression to AD (β3 and p(%)) for 14 randomly selected patients from the 

ROS study.

ID 6th visit 7th visit 8th visit 9th visit 10th visit 11th visit Time to first AD diagnosis

50108200 −0.06 −0.07 −0.09 −0.11 −0.15 −0.18 11th visit

53 54 71 79 95 99

50102790 −0.09 −0.12 −0.16 −0.18 −0.18 - 10th visit

70 84 95 98 98

50103679 −0.13 −0.15 −0.16 −0.18 - - 9th visit

85 91 96 98

81874628 −0.13 −0.13 −0.14 −0.13 −0.17 - 10th visit

86 89 94 90 98

64336939 −0.11 −0.15 −0.11 −0.15 −0.17 −0.17 11th visit

78 92 78 93 98 98

20195344 −0.10 −0.09 −0.12 −0.12 −0.15 −0.19 11th visit

76 69 84 85 95 100

59796318 −0.08 −0.05 −0.09 - - - 8th visit

61 46 72

5632732 −0.05 −0.05 −0.10 −0.12 −0.06 −0.07 -

47 44 74 83 60 61

5577538 −0.10 −0.07 −0.06 −0.03 −0.02 −0.02 -

73 56 50 34 24 22

50108912 −0.09 −0.09 −0.10 −0.08 −0.12 −0.12 -

70 64 79 62 86 88

5218242 −0.11 −0.07 −0.05 −0.03 −0.03 −0.04 -

77 54 46 27 30 40

10100448 −0.08 −0.07 −0.04 −0.02 −0.04 −0.05 -

59 57 37 27 37 52

10100600 −0.08 −0.06 −0.07 −0.07 −0.05 −0.05 -

65 47 55 58 49 54

31813134 −0.07 −0.06 −0.08 −0.10 −0.11 −0.14 -

60 52 64 77 82 94

AD: Alzheimer’s disease.
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