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Abstract

Objective: Accumulation of cerebral amyloid-b (Ab) is a risk factor for cognitive decline and defining feature of
Alzheimer’s disease (AD). Ab is implicated in brain network disruption, but the extent to which these changes
correspond with observable cognitive deficits in pre-clinical AD has not been tested. This study utilized
individual-specific functional parcellations to sensitively evaluate the relationship between network connectivity
and cognition in adults with and without Ab deposition.
Participants and Methods: Cognitively unimpaired adults ages 45–85 completed amyloid positron emission
tomography, resting-state-functional magnetic resonance imaging (fMRI), and neuropsychological tests of epi-
sodic memory and executive function (EF). Participants in the upper tertile of mean standard uptake value ratio
were considered Ab+ (n = 50) while others were Ab� (n = 99). Individualized functional network parcellations
were generated from resting-state fMRI data. We examined the effects of group, network, and group-by-network
interactions on memory and EF.
Results: We observed several interactions such that within the Ab+ group, preserved network integrity (i.e.,
greater connectivity within specific networks) was associated with better cognition, whereas network desegrega-
tion (i.e., greater connectivity between relative to within networks) was associated with worse cognition. This
dissociation was most apparent for cognitive networks (frontoparietal, dorsal and ventral attention, limbic,
and default mode), with connectivity relating to EF in the Ab+ group specifically.
Conclusions: Using an innovative approach to constructing individual-specified resting-state functional connec-
tomes, we were able to detect differences in brain-cognition associations in pre-clinical AD. Our findings provide
novel insight into specific functional network alterations occurring in the presence of Ab that relate to cognitive
function in asymptomatic individuals.
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Impact Statement

Elevated cerebral amyloid-b is a biomarker of pre-clinical Alzheimer’s disease (AD). Associations between amyloidosis,
functional network disruption, and cognitive impairment are evident in the later stages of AD, but these effects have not
been substantiated in pre-clinical AD. Using individual-specific parcellations that maximally localize functional networks,
we identify network alterations that relate to cognition in pre-clinical AD that have not been previously reported. We dem-
onstrate that these effects localize to networks implicated in cognition. Our findings suggest that there may be subtle,
amyloid-related alterations in the functional connectome that are detectable in pre-clinical AD, with potential implications
for cognition in asymptomatic individuals.
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Introduction

Among cognitively unimpaired older adults, roughly
30% harbor elevated cerebral b-amyloid (Ab) by age

70 years ( Jack et al, 2019). The presence of abnormal Ab
levels is considered a biomarker of Alzheimer’s disease
(AD; Jack et al, 2018) that increases the risk of future cogni-
tive decline and development of AD dementia (Baker et al,
2017; Jagust, 2016). One mechanism by which accumulation
of Ab might negatively impact cognition is through disruption
of neural communication, which has been observed at both the
structural and functional levels in cognitively unimpaired
adults (Elman et al, 2016; Pereira et al, 2018). However, the
extent to which Ab-related brain network disruption is associ-
ated with subtle cognitive changes in the asymptomatic phase
(i.e., pre-clinical AD) is not well understood.

The deposition of Ab occurs preferentially in highly ac-
tive, metabolically demanding, neocortical brain areas that
participate in multiple functional brain networks (Buckner
et al, 2005, 2009; Drzezga et al, 2011; Jagust and Mormino,
2011; Mormino et al, 2011). Therefore, there is spatial corre-
spondence between Ab accumulation and cortical hub re-
gions of intrinsic functional networks that are implicated in
cognition. The default mode network (DMN), which is
involved in internal mentation and episodic memory (Buck-
ner et al, 2008; Sestieri et al, 2011), shows early and targeted
Ab accumulation (Buckner et al, 2005; Jagust and Mormino,
2011; Palmqvist et al, 2017) and disrupted connectivity
across the AD continuum (Badhwar et al, 2017; Eyler et al,
2019; Hedden et al, 2009; Jones et al, 2016; Mormino
et al, 2011; Sheline et al, 2010; Xue et al, 2019).

However, Ab-related network dysfunction is not limited to
the DMN and instead impacts multiple networks, particularly
those exhibiting high connectivity (Myers et al, 2014). In
cognitively unimpaired adults, higher Ab is associated
with decreased connectivity both within and between the
DMN, frontoparietal (Palmqvist et al, 2017), and salience
networks (Chhatwal et al, 2018). Interestingly, emerging
evidence suggests preferential degradation of networks
implicated in cognition (i.e., the DMN, salience, dorsal
attention, and control networks), with Ab+ individuals
exhibiting lower connectivity in these networks (Chhatwal
et al, 2018). Although one study reports that cognitive net-
work changes in Ab+ individuals predict cognitive decline
several years later (Buckley et al, 2017), the extent to which
Ab-related network alterations correspond directly to ob-
servable cognitive deficits during the pre-clinical stage
has not been reported.

One obstacle to studying these effects is that alterations in
functional connectivity very early in the disease course are
likely to be quite subtle and thus difficult to detect. We ad-
dress this challenge in the current study by using a method
that maps functional regions in individual subjects, account-
ing for interindividual variability in network connectivity
(Wang et al, 2015). This is in contrast to typical studies of
connectivity where each subject’s functional data are pro-
jected to a population-based atlas, requiring the base assump-
tion that the spatial topology of functional networks is
invariant across individuals. Rather than doing this, the ap-
proach used in this study maps subject-specific functional re-
gions through an iterative reweighting process that is initially
guided by a population-level network atlas and then gradu-

ally adjusts the network boundaries, allowing the individual-
specific information to replace the group information.

This procedure can be conceptualized as identifying ho-
mologous brain regions in individual subjects. These subject-
specific functional parcellations have been shown to be
highly reliable and have been validated by invasive cortical
stimulation (Li et al, 2019; Wang et al, 2015). By more accu-
rately localizing functional regions at the individual level, we
better account for the anatomical and functional heterogeneity
observed in aging brains (Eavani et al, 2018; Geerligs et al,
2017), ultimately strengthening our ability to characterize
early Ab-related functional alterations. We hypothesize that
using parcellations that are maximally representative of indi-
viduals’ actual functional networks will increase the likeli-
hood of detecting associations with observable behavior.

Thus, the primary aim of this study was to examine
whether resting-state functional connectivity, measured in
this highly individualized way, differentially relates to cog-
nition in cognitively unimpaired adults with pre-clinical
AD as defined by high brain Ab deposition. We assessed
these relationships with neuropsychological measures of ep-
isodic memory and speed/executive function (EF) as these
two domains decline early in the disease course (Mortamais
et al, 2017). Assuming that Ab deposition preferentially im-
pacts functional networks related to cognition, we expected
that network connectivity would be associated with neuropsy-
chological test performance to a greater extent in the Ab+ than
Ab� group. Specifically, we expected that among Ab+ indi-
viduals, altered DMN and limbic network connectivity
would be most strongly associated with memory performance
whereas frontoparietal, dorsal attention, and ventral attention
connectivity would be associated with speed/EF.

Materials and Methods

Participants

Data were drawn from baseline assessments of
community-dwelling adults aged between 45 and 85 years
who were enrolled in a 2-year observational study of pre-
clinical AD, which was approved by the Medical University
of South Carolina institutional review board. We recently
reported white matter changes in aging and pre-clinical AD
in a sample of 153 participants (Benitez et al, 2022). The cur-
rent sample is slightly smaller (N = 149) due to those who
were missing data that were needed specifically for this
study and that were excluded due to head motion during
functional magnetic resonance imaging (fMRI).

As previously reported, participants had no MRI or posi-
tron emission tomography (PET) contraindications, spoke
English as a first/primary language, had no history of severe/
unstable conditions that affect cognition (e.g., stroke, brain
cancer, seizures, serious mental illness, current alcohol or sub-
stance abuse), had no incidental findings per MRI or incom-
plete PET, resting-state fMRI, or neuropsychological test
data, and no evidence of cognitive impairment on the Montreal
Cognitive Assessment (i.e., age- and education-corrected
z-score <�1 using norms from Rossetti et al, 2011).

The final sample (N = 149) were older adults (Mage =
67.40, SD = 9.66) who were majority white (n = 136,
91.3%) and female (n = 104, 69.8%) with college education
on average (Medu = 16.12; range: 8–25 years). Participants
were categorized into an Ab-positive pre-clinical AD
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group (Ab+, n = 50, 66% female) and Ab-negative group
(Ab�, n = 99, 72% female); this process is described in the
PET Acquisition and Analysis section below. As in the pre-
vious article, the groups did not differ significantly on demo-
graphic factors, apart from age (Table 1), or medical history
(Supplementary Table S1).

Neuropsychological measures

Participants completed the neuropsychological battery
from the National Alzheimer’s Coordinating Center Uniform
Data Set Version 3.0 (Besser et al, 2018). We applied pub-
lished normative equations to compute domain-specific fac-
tor Z-scores that were adjusted for age, sex, and years of
education (Kiselica et al, 2020). The episodic memory fac-
tor score was computed using scores on immediate and
delayed story recall and the speed/EF (speed/EF) factor
was derived from scores on Trail Making Test parts A
and B and phonemic fluency. Using demographically ad-
justed normative factor scores allows us to more accurately
estimate true cognitive performance by minimizing the ef-
fects of confounding variables such as age and education
level.

PET acquisition and analysis

Detailed information about PET scan (F-18 florbetapir;
Amyvid�) parameters and analysis was reported previously
(Benitez et al, 2022). In brief, brain cortical amyloid burden
for each participant was quantified as the mean standard up-
take value ratio (mSUVr). This was calculated as the non-
weighted mean SUV in six cortical regions sensitive to
florbetapir uptake (anterior cingulate, posterior cingulate, pa-
rietal lobe, medial orbito-frontal lobe, middle temporal lobe,
and precuneus) normalized to the mean SUV of the whole
cerebellum reference region (Clark et al, 2011; Dong et al,
2020; Jack et al, 2013; Jelescu et al, 2018). Participants
were categorized into two groups such that those in the
upper mSUVr tertile were considered to be amyloid positive
and in the pre-clinical stage of AD (Ab+; n = 50 with mSUVr
‡1.21), while all other subjects were deemed amyloid nega-
tive (Ab�; n = 99).

This dichotomous approach is consistent with the current
National Institute on Aging and Alzheimer’s Association re-
search framework ( Jack et al, 2018), in which AD is categor-
ically defined by biomarkers, with elevated amyloid
indicating Alzheimer’s pathologic change and thus falling
on the AD continuum. The use of the upper tertile to delin-
eate amyloid positivity is based on previously published
work by both our group (Benitez et al, 2022) and others
(Lowe et al, 2018; Vasilevskaya et al, 2020) that used an
upper tertile to identify individuals with elevated AD bio-
markers. The resulting threshold (mSUVr ‡1.21) appears
to reflect significant amyloidosis as it is consistent with val-
ues observed in samples with a clinical diagnosis of mild
cognitive impairment as opposed to healthy controls ( John-
son et al, 2013).

fMRI acquisition, processing, and analysis

Acquisition. MRI scans were collected on a 3T Prisma
MRI system using a 32-channel head coil (Siemens Medical
Solutions, Erlangen, Germany). The following sequences

were acquired: (1) T1-weighted 3D imaging using an
MPRAGE sequence with these parameters: TR/TI/TE =
2300/900/2.26 ms, FOV = 256 · 256 mm2, a generalized auto-
calibrating partially parallel acquisition (GRAPPA) factor of
2, voxel size 1.0 · 1.0 · 1.0 mm3; (2) two resting-state se-
quences were acquired (374 volumes each, 748 volumes
total) using echo-planar imaging sequences with these param-
eters: TR/TE = 1110/30.0 ms, FOV = 192 · 192 mm2, flip an-
gle = 65�, acceleration factor of 3, 51 interleaved axial
slices, slice thickness = 3.0 mm, voxel size 3.0 · 3.0 ·
3.0 mm3. In total, we collected 13.84 min of resting-state data.

Processing. Structural MRI and fMRI data were pro-
cessed according to previously published pipelines (Thomas
Yeo et al., 2011; Wang et al., 2015) that use a combination of
FreeSurfer, FSL ( Jenkinson et al, 2002; Smith et al, 2004),
and SPM. For the resting-state data, this included (1) discard-
ing the first four volumes, (2) slice timing correction using
SPM2, (3) rigid-body head motion correction using FSL,
(4) normalization for global mean signal intensity, (5) band-
pass temporal filtering (0.01–0.08 Hz), and (6) regression of
spurious variance and their derivatives, including head mo-
tion parameters, mean signal from whole-brain, white matter,
and ventricular cerebrospinal fluid. Volumes were not cen-
sored based on head motion.

Data included in this analysis did not demonstrate high
levels of head motion, defined as mean framewise displace-
ment (FD) >0.30 and >20% of volumes with FD >0.50. In the
remaining sample, mean FD across runs was 0.14
(SD = 0.08). For the T1-weighted structural images, process-
ing included (1) intensity normalization and (2) reconstruc-
tion of surface mesh representations of the cortex that were
registered to a common spherical coordinate system.

Analysis. The method for generating individual-level
functional parcellations has been described in detail previ-
ously (Wang et al, 2015) and is depicted in Figure 1. First,
structural and functional images were aligned using
boundary-based registration via the FsFast software package;
the preprocessed resting-state fMRI data were aligned to the
common spherical coordinate system and smoothed with a
6-mm full-width half-maximum smoothing kernel in the sur-
face space; and the preprocessed data were then down-
sampled to the FreeSurfer fsaverage6 surface space with
40,962 vertices in each hemisphere (Fig. 1A).

Next, an iterative process was used to optimize functional
localization (Fig. 1B), which involves (1) registering a
population-based functional brain atlas (Thomas Yeo et al,
2011) to each participant’s fsaverage6 cortical surface space,
(2) averaging blood-oxygen-level-dependent (BOLD) signal
across vertices falling within each of the seven networks
from the Yeo atlas, which then serve as reference signals,
(3) reassigning each vertex to one of the seven networks
based on the maximum correlation between its BOLD signal
and the reference (network) signal, (4) generating a core signal
for each network by averaging the BOLD signal across only
vertices with high confidence values, based on the ratio be-
tween its largest and second largest correlation with reference
networks, and (5) calculating an updated reference signal by
taking a weighted average of the reference and core signals
as well as estimates of intersubject variability, signal to
noise ratio, and number of iterations.
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Table 1. Sample Characteristics by Amyloid Group Status and Tests of Group Differences

Normal AD biomarker
(Ab�; n = 99)

Pre-clinical AD
(Ab+; n = 50)

Group
difference

Mean SD Min Max Mean SD Min Max Stat p

Demographics
Age 64.82 9.73 45.06 84.66 72.50 7.25 51.01 84.60 t =�5.42 <0.001
Edu 16.28 2.46 8 23 15.80 2.72 12 25 U = 2083.0 0.11
Sex: female, n (%) 71 (71.7%) — — — 33 (66.0%) — — — v2 = 0.39 0.53
Race, n (%) — — — — — — v2 = 0.93 0.63
White 89 (89.9%) — — — 47 (94.0%) — — — — —
Black 9 (9.1%) — — — 3 (6.0%) — — — — —
Asian 1 (1.0%) — — — 0 (0.0%) — — — — —

Characteristics
Amyloidosis (mSUVr) 1.13 0.05 0.90 1.21 1.46 0.26 1.21 2.20 U = 4950.0 <0.001
Motion (mean) 0.13 0.07 0.04 0.31 0.15 0.08 0.06 0.54 U = 2869.0 0.11

Cognitive performance (factor Z-scores)
Memory �0.93 1.32 �4.09 1.56 �1.18 1.07 �3.29 1.36 t = 1.16 0.25
Speed/executive �0.65 1.49 �5.15 2.33 �1.09 1.58 �6.47 1.49 U = 2857.5 0.13

Network connectivity (Z-scores) F(147)a p
Within-network

VIS 0.46 0.10 0.24 0.70 0.45 0.09 0.28 0.62 0.01 0.90
MOT 0.45 0.15 0.19 0.86 0.43 0.11 0.23 0.69 0.01 0.91
DAT 0.47 0.13 0.20 0.88 0.48 0.14 0.22 0.71 0.47 0.49
VAT 0.65 0.15 0.21 1.15 0.64 0.15 0.29 0.95 0.38 0.54
LIM 0.16 0.05 0.04 0.33 0.17 0.07 0.04 0.33 3.17 0.08
FPN 0.22 0.06 0.09 0.38 0.22 0.07 0.07 0.40 0.00 0.97
DMN 0.22 0.05 0.09 0.36 0.21 0.06 0.06 0.33 0.15 0.69
Within 0.38 0.05 0.22 0.53 0.37 0.05 0.25 0.46 0.47 0.49
Within: cognitive 0.34 0.05 0.18 0.50 0.34 0.06 0.19 0.45 0.90 0.34

Between-network
VIS-MOT 0.06 0.11 �0.19 0.42 0.06 0.09 �0.13 0.28 0.00 0.99
VIS-DAT 0.15 0.10 �0.09 0.38 0.15 0.09 �0.04 0.38 0.02 0.88
VIS-VAT 0.07 0.12 �0.25 0.45 0.07 0.11 �0.17 0.37 0.03 0.86
VIS-LIM �0.06 0.05 �0.20 0.06 �0.07 0.06 �0.20 0.09 2.15 0.14
VIS-FPN �0.11 0.06 �0.31 0.05 �0.12 0.06 �0.28 �0.02 1.98 0.16
VIS-DMN �0.13 0.06 �0.33 0.01 �0.12 0.06 �0.26 0.00 0.20 0.65
MOT-DAT 0.09 0.09 �0.15 0.30 0.11 0.09 �0.10 0.43 1.10 0.30
MOT-VAT 0.30 0.09 0.10 0.56 0.30 0.09 0.14 0.55 0.01 0.91
MOT-LIM �0.06 0.06 �0.21 0.08 �0.06 0.06 �0.19 0.08 0.04 0.83
MOT-FPN �0.16 0.08 �0.38 �0.01 �0.15 0.07 �0.34 0.00 0.01 0.92
MOT-DMN �0.10 0.06 �0.28 0.02 �0.10 0.06 �0.23 0.03 0.00 0.92
DAT-VAT 0.26 0.12 �0.04 0.59 0.27 0.14 0.00 0.52 0.56 0.45
DAT-LIM �0.09 0.07 �0.27 0.06 �0.11 0.06 �0.26 0.04 2.24 0.14
DAT-FPN 0.03 0.07 �0.14 0.28 0.01 0.07 �0.18 0.18 0.63 0.43
DAT-DMN �0.23 0.08 �0.47 �0.09 �0.22 0.09 �0.41 0.01 0.27 0.60
VAT-LIM �0.13 0.08 �0.31 0.05 �0.14 0.08 �0.31 0.10 1.18 0.28
VAT-FPN �0.07 0.07 �0.24 0.12 �0.07 0.08 �0.26 0.11 0.00 0.99
VAT-DMN �0.22 0.08 �0.45 �0.01 �0.21 0.10 �0.40 �0.01 0.15 0.69
LIM-FPN �0.03 0.04 �0.17 0.11 �0.03 0.05 �0.12 0.06 0.19 0.66
LIM-DMN 0.09 0.05 �0.01 0.22 0.09 0.05 �0.05 0.21 0.69 0.41
FPN-DMN 0.00 0.06 �0.21 0.16 0.00 0.06 �0.12 0.12 0.00 0.96
Between �0.02 0.01 �0.05 0.04 �0.02 0.01 �0.03 0.02 0.14 0.71
Between: cognitive �0.04 0.02 �0.07 0.02 �0.04 0.02 �0.07 0.00 0.07 0.79

Desegregation
Desegregation �1.04 0.04 �1.09 �0.89 �1.04 0.03 �1.11 �0.94 0.12 0.72
Desegregation: cognitive �1.11 0.05 �1.18 �0.95 �1.11 0.04 �1.18 �1.01 0.00 0.99

Significant effects are indicated by p-values in bold.
aAge was covaried in tests of group differences in network connectivity. Connectivity metrics are averages of r-to-z transformed connec-

tivity values.
Ab, amyloid-b; AD, Alzheimer’s disease; DAT, dorsal attention; DMN, default mode network; FPN, frontoparietal network; LIM. limbic;

MOT, somatomotor network; mSUVr, mean standard uptake value ratio; VAT, ventral attention network; VIS, visual network.
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This process of iteratively reassigning vertices to the
seven networks is repeated until a stopping criterion is met
that indicates stability of network membership. This resulted
in individualized functional parcellations (Fig. 1C) contain-
ing 92 regions of interest belonging to seven networks: visual
(VIS), somatomotor (MOT), dorsal attention (DAT), ventral
attention (VAT), limbic (LIM), default mode (DMN), and
frontoparietal (FPN).

Computing functional connectivity metrics

Functional connectivity was calculated as the Pearson corre-
lation (r) between the time courses of each individually local-
ized node pair identified in the previous step, resulting in a
92-node · 92-node fully connected matrix for each participant.
Correlation coefficients were then normalized within-
participant using Fisher’s r-to-z transformation. Within-
network connectivity of each of the seven networks was
calculated by averaging the connectivity values of constitu-
ent nodes. Between-network connectivity was calculated in
the same way but for nodes belonging to each network pair
(21 pairs). In addition, we included a metric of network de-
segregation given that previous work has found network de-
differentiation to be characteristic of aging (Koen et al 2020),
exacerbated in AD, and related to worse cognition (Maass
et al, 2019; Meeker et al, 2020).

Network desegregation takes into account both within- and
between-network connectivity, offering a more comprehen-
sive measure of internetwork relationships. It was calculated
from the system segregation metric (SyS; Chan et al, 2014)

as: SyS = (mean within-network connectivity � mean
between-network connectivity)/mean within-network con-
nectivity. In this study, desegregation is defined as the SyS
value multiplied by �1. These calculations were also done
for cognitive networks specifically (i.e., DMN, FPN, LIM,
DAT, and VAT), to quantify average connectivity within
and between cognitive networks as well as desegregation
among cognitive networks.

Statistical analyses

Each variable was assessed for normality using Shapiro–
Wilk tests. Two participants had speed/EF factor scores
that were statistical outliers (>�3 SD); these were winsor-
ized to the value associated with �3 SD and were checked
to ensure that they did not exert undue influence on the regres-
sion analyses using Cook’s Distance. Independent samples
t-tests, or Mann–Whitney U tests for non-normally distributed
variables, were used to examine group differences in demo-
graphic and medical variables, cognitive factor scores, and
connectivity metrics (Table 1 and Supplementary Table S1).
Since the Ab+ group was significantly older than the Ab�
group, age was included as a covariate in all subsequent ana-
lyses. Analysis of covariance was used to test for group differ-
ences in connectivity metrics, controlling for age.

General linear models were used to assess the main effects
of network connectivity and group-by-network interaction
effects on memory and speed/EF factor scores separately,
each controlling for age. For this, we used Z-standardized
variables to produce standardized beta estimates with

FIG. 1. Analysis pipeline for generating individualized functional parcellations. This process is described in detail in
the Materials and Methods section and involves (A) coregistration of the participant’s structural and resting-state fMRI
data followed by (B) an iterative process of mapping a population-based network atlas to the individual’s functional topology,
which results in (C) subject-specific functional parcellations. fMRI, functional magnetic resonance imaging. Color images
are available online.
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comparable units across models. Significant interaction ef-
fects were probed using simple slopes analyses to determine
the direction and significance of association between connec-
tivity and cognition in each group. False discovery rate
(FDR) correction was used to adjust for multiple compari-
sons for the linear models, and adjusted p-values were con-
sidered significant at alpha £0.05. This was done separately
for each outcome variable (i.e., 34 p-values for memory
and 34 p-values for speed/EF), first for interaction effects
and then for main effects in any models without significant
interactions.

Given the preliminary nature of this study and the modest
sample size, we focused our interpretations on effect sizes as
these will be most informative for guiding future studies.

Results

No group differences in cognition and connectivity

Sample characteristics and tests of group differences are
presented in Table 1. The Ab+ group was older on average
(Mage = 72.50 years, SD = 7.25) than the Ab� group (Mage =
64.82 years, SD = 9.70, p < 0.001). The two groups did not
differ on other demographic variables (i.e., years of educa-
tion, sex, or race) or average in-scanner head motion.
There were no significant differences in average memory
or speed/EF performance between groups, and scores
were within roughly 1 SD of the normative mean, consistent
with the criterion that participants be cognitively unim-
paired at enrollment. Nonetheless, there was a wide range

of individual differences in memory and speed/EF perfor-
mance in both groups, which is to be expected when sam-
pling cognitive performance from the general population,
with some individuals performing considerably lower
than expected compared to demographically matched
normative samples. Despite the lack of significant group
differences, median memory and speed/EF scores for the
Ab� group were within 1 SD of the normative mean
whereas median scores for the Ab+ group were lower, fall-
ing <�1 SD in both domains. There were also no significant
group differences in functional connectivity metrics (i.e.,
within-network, between-network, or desegregation) or
medical history variables (Supplementary Table S1).

Differential associations between network connectivity
and speed/EF

Results for the significant general linear model effects and
simple slopes analyses for the speed/EF outcome are pre-
sented in Table 2. The majority of effects were for speed/
EF, with small to medium effect sizes (g2

p = 0.03–0.05).
Notably, these were mostly group-by-network interactions
that involved cognitive networks either alone (VAT, LIM,
DMN) or in composite form (aggregate of DMN, FPN,
LIM, DAT, and VAT connectivity). Simple slopes analyses
(‘‘B’’ in Table 2) showed that these interaction effects
were driven by the Ab+ group. Generally, higher within-
network connectivity was associated with better speed/EF
(Fig. 2A), whereas greater between-network connectivity
and network desegregation (i.e., greater between- relative

Table 2. Significant Effects of Network Connectivity and Group · Connectivity Interactions on Cognition

A. Results of general linear models B. Simple slopes analyses

Cognitive
outcome Network Effect Beta F (1, 147) p g2p

AB� AB+

Beta p Beta p

Speed/EF Within-network connectivity
Cognitive networks Group interaction 0.45 7.75 0.01** 0.05 �0.91 0.36 2.84 0.005**
VAT Group interaction 0.38 5.10 0.03* 0.03 �0.56 0.58 2.35 0.02*
DMN Group interaction 0.37 5.03 0.03* 0.03 �1.26 0.21 1.86 0.06{

Within Group interaction 0.36 4.23 0.04* 0.03 �0.33 0.74 2.22 0.03*
LIM Group interaction 0.35 4.55 0.03* 0.03 �1.35 0.18 1.66 0.10{

VIS Main �0.17 4.66 0.03* 0.03 — — — —
Between-network connectivity

VAT-LIM Group interaction �0.43 6.82 0.01** 0.05 1.67 0.10{ �2.01 0.05*
VAT-DMN Group interaction �0.40 6.05 0.02* 0.04 1.16 0.25 �2.22 0.03*
Cognitive networks Group interaction �0.39 4.89 0.03* 0.03 1.24 0.22 �1.84 0.07{

DAT-VAT Group interaction 0.36 4.82 0.03* 0.03 �0.20 0.84 2.62 0.01**
Desegregation

Cognitive networks Group interaction �0.35 3.85 0.05* 0.03 1.44 0.15 �1.42 0.16
Memory Between-network connectivity

VAT-LIM Group interaction �0.52 9.47 0.00** 0.06 1.85 0.07{ �2.45 0.02*
MOT-DAT Group interaction �0.45 6.73 0.01** 0.04 1.08 0.28 �2.47 0.02*
VIS-FPN Group interaction 0.44 6.54 0.01** 0.04 �1.86 0.06{ 1.81 0.07{

VIS-MOT Main 0.20 5.88 0.02* 0.04 — — — —
Desegregation
All networks Main 0.17 4.72 0.03* 0.03 — — — —

Beta values are standardized. Reported p-values are not adjusted for multiple comparisons. Results are ordered from strongest to weakest
effect size per network metric category. ‘‘Cognitive Networks’’ refers to composite connectivity within cognitive networks (i.e., default
mode, frontoparietal, limbic, dorsal attention, and ventral attention networks).

{p £ 0.10, *p £ 0.05, **p £ 0.01.
EF, executive function.
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to within-network connectivity) was related to worse speed/
EF performance (Fig. 2B).

We observed several group-by-network interactions that in-
dicated differential associations between within-cognitive-
network connectivity and speed/EF across groups. Specifically,
greater connectivity within cognitive networks was related to
better speed/EF in the Ab+ group, but was not significantly
related to performance in the Ab� group (medium effect
size: g2

p = 0.05, p = 0.006). This pattern was also true for av-
erage connectivity within all networks ( p = 0.041) and con-
nectivity within the VAT ( p = 0.025), DMN ( p = 0.026), and

LIM ( p = 0.035) networks individually, with small-medium
effect sizes (g2

p’s = 0.03). All of these effects marginally
survived correction for multiple comparisons (FDR adjusted
p’s = 0.14–0.15).

Conversely, greater connectivity between cognitive net-
works ( p = 0.029) and desegregation of cognitive networks
(i.e., higher connectivity between relative to within cognitive
networks; p = 0.052) was related to worse speed/EF in the
Ab+ group. Both effects were small-medium (g2

p’s = 0.03)
and marginally survived correction for multiple comparisons
(FDR p’s = 0.14–0.15). Similar effects were observed for

FIG. 2. Group-by-network interaction effects on speed/executive function. Plots show regression lines for the effect of net-
work connectivity (Z-standardized, x-axis) on Speed/EF factor scores (y-axis) for the Ab� group (green) and Ab+ group (pur-
ple). Points represent the partial residuals (i.e., covarying age), and the 95% confidence intervals around the regression lines
are represented by shaded areas. (A) Higher within-network connectivity (i.e., network integrity) is associated with better
Speed/EF for Ab+ individuals. (B) Greater between-network connectivity and desegregation is related to worse Speed/EF
for Ab+ individuals. EF, executive function. Color images are available online.
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connectivity between a few specific cognitive networks, with
worse speed/EF in the AB+ group related to greater VAT-
LIM ( p = 0.010) and VAT-DMN ( p = 0.015) connectivity,
with medium effect sizes and marginal FDR-adjusted
p-values (FDR p’s = 0.14).

These effects suggest that a breakdown in the typical
structure of communication among cognitive networks,
reflected in greater between-network connectivity and be-
tween- relative to within-network connectivity, appears to
be specifically related to worse performance on cognitive
tests in AB+ individuals. There were only two main effects
of network connectivity on speed/EF, but these were consid-
erably weaker (b’s = 0.17) than all other interaction effects
(b’s >0.35) and did not survive correction for multiple com-
parisons (FDR p’s > 0.52).

Fewer and more modest effects of network connectivity
on memory

Results for the significant general linear model effects and
simple slopes analyses for the memory outcome are pre-
sented in Table 2. The strongest effect was a group-by-
network interaction for connectivity between VAT and
LIM networks, with a medium effect size (g2

p = 0.06) and
marginally surviving correction for multiple comparisons
( p = 0.002, FDR p = 0.08). Simple slopes analyses revealed
that greater connectivity between these cognitive networks
was associated with worse memory for the Ab+ group
( p = 0.016), but not the Ab� group ( p = 0.066). Although
we did not observe a significant effect for the desegregation
metric itself for memory, this is consistent with the pattern
reported above supporting a link between network desegre-
gation (in this case just elevated between-network connectiv-
ity) and worse performance on cognitive tests for Ab+
participants.

There were several additional effects for memory that
were significant but did not survive correction for multiple
comparisons, including a main effect for VIS-MOT
( p = 0.017, FDR p = 0.56) and two group-by-network inter-
actions (VIS-FPN: p = 0.012, FDR p = 0.13; MOT-DAT:
p = 0.010, FDR p = 0.13).

Effects remain in age-matched sensitivity analyses

In addition to statistically controlling for age in the results
presented above, we conducted sensitivity analyses on age-
matched Ab+ and Ab� groups. To do so, we used a 1:1 near-
est neighbor-matching approach, in which each participant in
the target group (from the Ab+ group) is paired with a con-
trol participant (from the Ab� group) with the closest age
value. This resulted in retaining all 50 Ab+ participants and
creating a matched subgroup of 50 Ab� participants. Using
these samples, we replicated the above analyses without in-
cluding age as a covariate and found that all reported effects
remained statistically significant.

Discussion

This study evaluated the relationship between functional
connectivity, measured using individualized functional con-
nectomes, and cognition in cognitively unimpaired adults
with and without Ab deposition. Use of this innovative par-
cellation method, which more sensitively and precisely cap-

tures functional architecture at the subject-specific level,
allowed us to detect several group-by-network interactions
with moderate effect sizes. This revealed a pattern of effects
wherein for Ab+ individuals, preserved network integrity
was associated with better cognition and greater network de-
segregation was associated with worse cognition, primarily
on measures of speed/EF. Thus, we provide novel evidence
of associations between network alterations and cognition
specifically within asymptomatic adults harboring Ab (i.e.,
pre-clinical AD).

We found evidence that connectivity is differentially asso-
ciated with cognition in Ab+ versus Ab� individuals despite
there being no significant group differences in connectivity
metrics or performance on tests of episodic memory or
speed/EF. The largest and most consistent effects were inter-
actions indicating that connectivity involving cognitive net-
works (i.e., DMN, FPN, LIM, DAT, and VAT) was related to
speed/EF performance in the Ab+ group.

Two patterns were observed. First, greater connectivity
within cognitive networks was associated with better perfor-
mance in Ab+ individuals, whereas there were no significant
associations in the Ab� group. This suggests that stronger
connectivity within each of these cognitive networks individ-
ually and in the aggregate (reflecting greater network integ-
rity; Dennis and Thompson, 2014) is related to better speed/
EF abilities for individuals harboring Ab. Second, connectiv-
ity between cognitive networks and desegregation of cogni-
tive networks were differentially associated with cognitive
test performance across groups. The interactions were such
that both between-cognitive-network connectivity and de-
segregation among cognitive networks were related to
worse cognitive test performance for Ab+ individuals, but
not those who were Ab�. This suggests that stronger con-
nectivity between different cognitive networks and greater
connectivity between relative to within them, indicating
loss of network specialization (Chan et al, 2014), was asso-
ciated with lower speed/EF scores in the presence of Ab.

These results are a snapshot of what is likely a complex
progression of functional reorganization in AD. Previous
work has suggested that there are stages of early hypercon-
nectivity in the presence of initial Ab accumulation, poten-
tially reflecting compensatory functional reorganization,
followed by hypoconnectivity at higher levels of AD pathol-
ogy (Mormino et al, 2011; Schultz et al, 2017). The cascad-
ing network failure model of AD, proposed by Jones et al
(2016, 2017), may be particularly helpful for interpreting
our results. Within this framework, brain regions that are
highly active and that experience high processing demands
may be first to become susceptible to AD-related pathology,
which initiates a shifting of processing load to down-
stream functionally connected hubs. Amyloidosis and tau-
associated neurodegeneration are thought to be accelerated
in the context of an increased processing load that exceeds
compensatory reserves, posing high metabolic demands.
Importantly, the metric of network failure used in this
model is quantified as greater connectivity between than
within regions ( Jones et al, 2017; Wiepert et al, 2017),
which maps onto the desegregation metric used in the current
analyses.

Although our cross-sectional study cannot speak to causal
relationships, it appears that our finding of an association be-
tween network desegregation and cognitive deficits in Ab+
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individuals may reflect evidence of these cascading network
failures in the presence of elevated amyloid. Conversely, our
observation of a positive association between higher within-
network connectivity and better cognitive performance in the
Ab+ group could reflect either the preservation of healthy
network structure (i.e., normal coherence among regions
within a network) or signs of compensatory increases in con-
nectivity (i.e., hyperconnectivity) in networks that have not
yet failed.

Interestingly, we did not observe significant differences in
network connectivity metrics across groups. The lack of such
differences likely reflects the fact that the Ab+ group is in the
very earliest stages of AD, in which disease burden is low
and thus network disruption is expected to be quite subtle.
Thus, there may not be discernable group differences in
these metrics in this disease stage or we might be underpow-
ered to detect them with the current sample sizes. Nonetheless,
we were able to demonstrate moderately sized brain-behavior
associations and our results indicate that connectivity appears
to only be associated with cognition for those in a disease state.
This suggests that certain patterns of connectivity (e.g., deseg-
regation) are a potentially important indicator of cognitive dys-
function in the presence of disease.

The majority of our results localized to cognitive networks
in the Ab+ group, which is consistent with prior evidence of
preferential degradation of cognitive networks in AD. Specif-
ically, Chhatwal et al (2018) evaluated connectivity changes
across stages of the AD continuum, finding a pattern of
cognitive-network-specific decreased connectivity in those
with symptomatic AD and pre-clinical AD (i.e., cognitively
unimpaired with positive AD biomarkers) but a much more
diffuse pattern of network degradation in normal aging. Sim-
ilarly, Buckley et al (2017) found that baseline connectivity
in cognitive networks, but not noncognitive networks (i.e.,
VIS or MOT networks), predicted longitudinal decline in
global cognition over 3 years. Further, they observed that
lower DMN, FPN, and salience network connectivity inter-
acted with Ab to predict the steepest decline in cognition.
Thus, our findings add to accumulating evidence that early
Ab-related network disruption is most apparent in networks
implicated in higher order cognition.

When evaluating cognitive networks in the present study,
we found that effects were slightly stronger for the aggregate
measure of cognitive networks than individual networks
alone. However, the association between better speed/EF in
Ab+ individuals and preserved within-network connectivity
appeared to be driven by the VAT, LIM, and DMN networks.
The finding involving the DMN, specifically, is consistent
with the extensive literature documenting overlap between
the DMN and patterns of AD pathology (Buckner et al,
2005; Jagust and Mormino, 2011), early signs of amyloid ac-
cumulation in the DMN (Palmqvist et al, 2017), and disrupted
DMN connectivity across the AD continuum (Badhwar et al,
2017; Eyler et al, 2019; Jones et al, 2016; Xue et al, 2019).

Several previous studies have demonstrated altered DMN
connectivity in cognitively unimpaired adults with high am-
yloid (Hedden et al, 2009; Mormino et al, 2011; Sheline et al,
2010) and associations between DMN connectivity and
memory in aging, pre-clinical AD, amnestic mild cognitive
impairment, and AD (Ji et al, 2019; Jones et al, 2016). Our
results expand upon this to suggest that poorer integrity not
only of the DMN, but other cognitive networks as well,

may be implicated in worse cognitive performance in pre-
clinical AD.

Further, while many previous studies focused solely on
single networks, by using a broader approach that considered
all functional networks, our results suggest that subtle differ-
ences in connectivity-cognition relationships in Ab+ versus
Ab� individuals might be best captured by aggregate mea-
sures of connectivity in multiple networks. This is consistent
with evidence that AD is a multinetwork disease character-
ized by a loss of connectivity both within and between mul-
tiple networks (Brier et al, 2012).

One unique aspect of this study is that we go beyond the
previously reported evidence of network alterations in the
presence of Ab by revealing specific associations between
network connectivity and cognitive test performance in clin-
ically normal Ab+ adults which, to our knowledge, has not
yet been reported. Although individuals with pre-clinical
AD are, by definition, cognitively unimpaired, certain as-
pects of cognition begin to diverge from normal even in
this asymptomatic stage. We focus on episodic memory
and EF since these two domains show the earliest changes
in the course of AD (Mortamais et al, 2017) and greatest de-
clines in cognitively unimpaired adults with elevated Ab
(Lim et al, 2014; Lim et al, 2013; Petersen et al, 2016),
thus increasing our chances of observing connectivity-
cognition associations in pre-clinical AD if they exist.

We did not observe any significant group differences in
memory or speed/EF, but connectivity was differentially asso-
ciated with performance in both cognitive domains, with most
group-by-network interactions localizing to speed/EF in the
Ab+ group rather than memory. This suggests that, although
processing speed is known to decrease with age, this cognitive
domain may also be particularly susceptible to early Ab-related
functional network disruption and a sensitive indicator of the
inflection point between typical aging and pre-clinical AD.
Thus, efforts toward developing neuropsychological tools to
detect cognitive changes associated with pre-clinical AD
should include measures of speed/EF in addition to memory.

The effects observed in this study were all small-to-
medium in size, which is to be expected given the subtlety
of early AD-related changes in both brain networks and cog-
nition in this otherwise healthy, cognitively unimpaired sam-
ple. These modest effects are inherently difficult to detect,
which may be the reason that no previous studies have
reported on the associations between network disruption
and cognition in pre-clinical AD. However, the use of
more refined methods, namely individual-specific functional
parcellations (Wang et al, 2015), revealed several group-by-
network interactions on cognition. Our ability to detect these
effects was likely bolstered by the highly accurate localiza-
tion of functional regions on the individual level while
accounting for the inherent variability in network connectiv-
ity observed across individuals and minimizing the influence
of anatomical and functional heterogeneity observed with
aging and neurodegenerative disease.

This method has been used with similar success in several
other clinical populations, including depression (Zhao et al,
2022), obsessive-compulsive disorder (Brennan et al,
2019), schizophrenia, and psychosis (Fan et al, 2021a; Fan
et al, 2021b; Wang et al, 2020), and to predict fluid intelli-
gence (Li et al, 2019). However, the subtlety of the effects
observed in this study suggests that resting-state functional
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connectivity may not be a powerful diagnostic biomarker of
pre-clinical AD. Given the preliminary nature of this study,
and the fact that more conservative multiple comparisons
correction rendered the effects nonsignificant, future studies
are needed to replicate these findings. Nonetheless, the ob-
served effect sizes are nontrivial and bode well for future at-
tempts at replication.

In addition to the limitations of this study discussed so far,
an important direction for future work is to consider AD bio-
markers not included in this study, such as measures of neu-
rodegeneration and tau ( Jack et al, 2018). Tau may be of
particular importance for future studies attempting to eluci-
date the nature of early disease-related functional alterations
as it differs from Ab in spatial distribution, coinciding largely
with cognitive networks (Hansson et al, 2017), and has unique
associations with cognition (Pereira et al, 2019). Further,
emerging evidence has revealed that AD pathogenesis in-
volves interactions between brain network dynamics, the de-
position and propagation of tau, and accumulation of Ab
(Franzmeier et al, 2019; Jones et al, 2017; Wu et al, 2016).

Given the cross-sectional design of this study, these find-
ings cannot be used to infer a causal link between Ab depo-
sition, altered connectivity, and cognitive decrements. We
cannot rule out selection bias and other unknown third vari-
ables in this convenience sample that could be contributing
to the observed effects. Future studies that concurrently mea-
sure changes in cognition, connectivity, and biomarker accu-
mulation/disease progression are needed to provide causal
evidence. Relatedly, while this study treated amyloid status
dichotomously as is very common in this literature, future
work could explore different ways to parameterize amyloid
continuously that overcome the challenges of its heterosce-
dastic distribution.

These results should also be considered with the caveat that
our sample was majority white, highly educated, and female,
which limits the generalizability of our findings to other groups
that are more heterogeneous in terms of sex/gender, race/eth-
nicity, and educational history. This may have also placed an
upper limit on our ability to detect effects given that this sam-
ple likely had high cognitive reserve, which has been associ-
ated with preserved cognition (Vemuri et al, 2011) and brain
features such as connectivity (Franzmeier et al, 2017).

Conclusions

In summary, this study assessed the relationships between
resting-state functional connectivity and cognition in cogni-
tively unimpaired Ab+ and Ab� adults. We utilized an inno-
vative approach to defining individual-specific network
parcellations that accounts for interindividual differences in
functional topology, which allowed us to maximize the sen-
sitivity of our analysis to the subtle effects that are present in
the pre-clinical AD stage. We found that disruption of con-
nectivity among cognitive networks in adults harboring ele-
vated Ab is associated with worse performance on tests of
speed/EF. These results suggest that there may be AD-
related alterations in the functional connectome present in
this early, pre-clinical phase that may have implications for
cognition even in clinically normal, asymptomatic individu-
als. Future work can determine the prognostic utility of these
functional network changes when predicting cognitive de-
cline and progression along the AD continuum.
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